variants and extensions of the resource constrained project scheduling problem. European Journal of Operational Research, Volume 207, Issue 1, 16,1-14.
Brucker P, Knust S.(2012). Scheduling Models. In: Complex Scheduling, 2nd ed. Springer, Berlin,6-11.
Demeulemeester E, Herroelen W. (1996). An efficient optimal solution procedure for the preemptive resource constrained project scheduling problem. European Journal of Operational Research, 90, 334-348.
Demeulemeester E, Herroelen W. (1997). A branch and bound procedure for the generalized resource-constrained project scheduling problem. Operations Research, 45, 201-212.
Demeulemeester E, Herroelen W, Van Dommelan P. (1996). An optimal recursive search procedure for the deterministic unconstrained MAX-NPV scheduling problem. Research Report 9603, Department of Applied Economics, K.U. Leuven.
Pritsker A, Watters L, Wolfe P. (1969). Multi project scheduling with limited resources: a zero-one programming approach. Management Science,16,93–107.
[10] Klein, R. (2000). Scheduling of Resource-Constrained Projects. Boston:
Kluwer Acadamic Publishers. pp. 79-80.
[11] Alvarez V, Tamarit J.( 1993). The project scheduling polyhedron:
Dimension, facets and lifting Theorems. European Journal of Operational
Research, 96, 204-220.
[12] Hendrix E.M,Toth B. (2010). Goodness of optimization algorithms
Introduction to Nonlinear and Global Optimization. Vol 37, pp 67-90:
Springer New York.
[13] Gonzalez T. F. (2007). Basic Methodologies. Handbook of
Approximation Algorithms and Metaheuristics, pp 1.1-1.17, Boca Raton, FL,
USA: Chapman and Hall/CRC.
[14] Talibi E. (2009). Metahuristics:from design to implementation, John Wiley
& Sons Inc. USA.Wiley Series on Parallel and Distributed Computing.
[15] Blum C, Roli A. (2003). Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput Surv, 35(3), 268-308.
[16] Holland J. (1975). Adaptation in natural and artificial systems. University
of Michigan Press, Ann Arbor.
[17] Runarsson T.P, Yao X. (2000). Stochastic ranking for constrained
evolutionary optimization. IEEE Transactions on Evolutionary
Computation, 4(3), 284-294.
[18] Fogel L.J, Owens A.J, Walsh M.J. (1966). Artificial intelligence through
simulated evolution. John Wiley, New York.
[19] Storn R, Price K. (1997). Differential evolution – A simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global
Optimization,11, 341-359.
[20] Price K, Storn R, Lampinen A. (2005). Differential evolution – a practical
approach to global optimization, Springer Natural Computing Series.
[21] Passino K.M. (2002). Biomimicry of bacterial foraging for distributed
optimization and control. IEEE Control Systems Magazine,22,52–67.
[22] Farmer J. D, Packard N, Perelson A. (1986).The immune system, adaptation
and machine learning. Physica D, 22,187-204.
[23] Kennedy J, Eberhart R.C. (1995). Particle swarm optimization. Proceedings
of IEEE International Conference on Neural Networks, IEEE Press,
Piscataway,1942-1948.
[24] Eusuff M, Lansey E. (2003). Optimization of water distribution network
design using the shuffled frog leaping algorithm. Journal of Water Resources
Planning and Management,29,210-225.
[25] Dorigo M, Maniezzo V, Colorni A. (1991). Positive feedback as a search
strategy, Technical Report 91-016. Politecnico di Milano, Italy.
[26] Karaboga D. (2005). An idea based on honey bee swarm for numerical
optimization, Technical Report-TR06, Computer Engineering Department.
Erciyes University, Turkey.
[27] Karaboga D, Basturk B. (2008). On the performance of artificial bee colony
(ABC) algorithm. Applied Soft Computing,8(1),687–697.
[28] Karaboga D, Basturk B. (2007). A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm.
Journal of Global Optimization,39(3),459–471.
[29] Basturk B, Karaboga D. (2006). An artificial bee colony (ABC) algorithm
for numeric function Optimization. in:IEEE Swarm Intelligence Symposium,
Indianapolis, Indiana, USA.
[30] Geem Z.W, Kim J.H, Loganathan G.V. (2001). A new heuristic optimization
algorithm: harmony search. Simulation,76,60-70.
[31] Rashedi E, Nezamabadi-pour H, Saryazdi S. (2009). GSA: A gravitational
search algorithm. Information Sciences,179,2232-2248.
[32] Simon D. (2008). Biogeography-based optimization. IEEE Transactions on
Evolutionary Computation,12,702–713.
[33] Ahrari A, Atai A. (2010). Grenade explosion method – A novel tool for
optimization of multimodal functions.Applied Soft Computing,10,1132-1140.
[34] Rao R.V, Kalyankar V. D, (2012). Parameter optimization of machining
processes using a new optimization algorithm. Materials and Manufacturing
Processes, 27(9), 978-985.
[35] Rao R.V, Savsani V.J. (2012). Mechanical design optimization using
advanced optimization techniques. Springer-Verlag, London.
[36] Rao R.V, Savsani V.J, Vakharia D.P. (2012). Teaching-learning-based
optimization: A novel optimization method for continuous non-linear large
scale problems. Information Sciences,183(1),1-15.
[37] Rao R.V,Savsani V.J, Vakharia D.P. (2011). Teaching-learning-based
optimization: A novel method for constrained mechanical design
optimization problems. Computer-Aided Design,43(3),303-315.
[38] Rao R.V, Patel V.K.(2012).Multi-objective optimization of combined
Brayton and reverse Brayton cycles using advanced optimization
algorithms.Engineering Optimization,DOI: 10.1080/0305215X.2011.624183.
[39] Rao R.V, Patel V. (2012). An elitist teaching-learning-based optimization
algorithm for solving complex constrained optimization problems.
International Journal of Industrial Engineering omputations, 3(4), 535-560.
[40] Herroelen W, DeReyck B, Demeulemeester E.(1998). Resource-constrained
project scheduling: A survey of recent developments. Computers Ops
Res,25(4),279-302.
[41] Brucker P, Knust S, Schoo A, Thiele O. (1998). A branch & bound algorithm
for the resource constrained project scheduling problem. European Journal of
Operational Research,107(2),272–288.
[42] Deckro R.F, Winkofsky E.P, Hebert J.E, Gagnon R. (1991). A decomposition
approach to multi-project scheduling. European Journal of O.R.,51,110-118.
[43] Icmeli O, Rom W.O. (1996). solving the resource-constrained project
scheduling problem with optimization subroutine library. Computers and
O.R.,23,801-817.
[44] Carruthers J, Battersby A.(1996). Advances in critical path methods.
Operational Research Quarterly,17, 359-380.
[45] Petrovic R. (1968). Optimisation of resource allocation in project planning.
Operations Research,16, 559-586.
[46] Demeulemeester E, Herroelen W.(1997). New benchmark results for the
resource-constrained project scheduling problem. Management
Science,43,1485-1492.
[47] Kolisch R, Hartmann S. (2006). Experimental Investigation of Heuristics for
Resource-Constrained Project Scheduling: An Update. European Journal of
Operations Research,174,23-37.
[48] Coelho J, Tavares L.(2003). Comparative analysis of meta–heuristics for the
resource constrained project scheduling problem. Technical report,
Department of Civil Engineering,Instituto Superior Tecnico, Portugal.
[49] Alcaraz J, Maroto C, Ruiz R. (2004). Improving the performance of genetic

دسته بندی : No category

دیدگاهتان را بنویسید